Rech AB. Small radiation field and alternative materials in dosimetry with electron magnetic resonance spectroscopy [thesis]. Ribeirão Preto: Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; 2017.To keep up with advances in radiotherapy, dosimetric systems need improvement to meet the standards established for treatment accuracy; simultaneously, radioactive exposure goes beyond clinical use, and the detection in unforeseen scenarios is of interest too. Electron magnetic resonance spectroscopy (EMR) can detect paramagnetic centers created in materials exposed to radiation, relating spectral response with absorbed dose, thus performing nondestructively dosimetry, by keeping the information after the readout. After standardization of alanine as a high dose detector and the applicability in clinical studies, difficulties allowed the investigation of other EMR dosimetry materials; on the other hand, classifying compounds that are present daily and with the possibility of tissue equivalence is another stimulus for the expansion of alternative materials analysis. The development of this thesis is between two distinct but interconnected topics; first minidosimeters are presented for small field dosimetry, with a clinical approach, and the investigation of alternative materials, both topics applied in EMR dosimetry. Concerning the minidosimeters, some pellets' aspects are studied, a new concept of detector, called EPResize®; and a stereotactic radiosurgery end-to-end audit are presented; about alternative materials research, more than 20 compounds were studied, based on ammonium, lithium, potassium and sodium. The results showed that the difficulties in determining the dose with small fields in a clinical dose range is an issue that still needs much attention and adequacy of the dosimetric systems, in order to extract the greatest possible sensitivity, with the need to employ parameters and methods of analysis besides the daily used; several materials were adequate for EMR dosimetry, such as ammonium sulfate, sodium formate, sodium dithionate, sodium citrate and different sulfites, which, even when not satisfying clinical aspects, are alternatives for control and determination of doses in other scenarios. The ability to perform clinical dosimetry with RME and the standardization of this system allow the improvement of treatments accuracy, and the availability of a greater variety of EMR dosimetry materials facilitates the need for dose mapping unforeseen cases.