Fusarium head blight (FHB) is an economically important disease of the family Triticeae, as, apart from yield reduction it also causes quality deterioration by producing mycotoxins. Host resistance is the most promising way to control the disease. Metabolic profiling was applied to identify resistance related (RR) metabolites against Fusarium graminearum in five FHB-resistant genotypes ('Chevron', 'H5277-44', 'H5277-164', 'M92-513' and 'M122') relative to one FHB-susceptible genotype ('Stander'). The disease severity was assessed in greenhouse to group the genotypes based on FHB-resistance. The disease was quantified as the proportion of diseased spikelets (PSD) and the area under the disease progress curve (AUDPC). Spikelets were collected at 72 h post inoculation. Metabolites were extracted into an aqueous solution of methanol and analyzed using a LC-hybrid-MS system. Metabolite abundances were subjected to a resistant versus susceptible pair-wise analysis, using a t test. Resistance related (RR) metabolites, both constitutive (RRC) and induced (RRI), were identified amongst metabolites whose levels were significantly higher in resistant genotype than in susceptible. Among 1,430 RR metabolites, 115 were putatively identified. These RR metabolites belonged to different chemical groups: fatty acids: linolenic acid; phenylpropanoids: p-coumaric, sinapic acid; flavonoids: naringenin, kaempferol glucoside, catechol glucoside. In addition, resistance indicator metabolites, such as deoxynivalenol (DON) and DON-3-O-glucoside (D3G) were also detected. The amount of total DON synthesized converted to D3G (PDC) was the greatest in resistant genotype 'Chevron' (PDC = 0.76). The role of the resistance-related and resistance-indicator metabolites on plant defense, and their use as potential biomarkers to screen barley genotypes for FHB resistance is discussed.