High blood pressure (hypertension), is a common medical condition, affecting millions of people and is associated with significant health risks. Exercise has been suggested to manage hypertension by inducing sweating and the corresponding loss of sodium and water from the body.Thus, a variety of epidemiological and clinical studies have been conducted to investigate the relationship between sweating and exercise-induced blood pressure reduction and its impacts on hypertension. The mechanisms underlying exercise-induced blood pressure reduction are complex and still not fully understood. However, several pathways have been suggested, including the loss of sodium and water through sweat, a decrease in peripheral resistance, and an improvement in endothelial function in the blood vessels. The decrease in sodium and water content in the body associated with sweating may result in a reduction in blood volume and thus a decrease in blood pressure. Moreover, the reduction in peripheral resistance is thought to be mediated by the activation of the nitric oxide synthase pathway and the release of vasodilators such as prostacyclin and bradykinin, which lead to vasodilation and, thus, a reduction in blood pressure. In conclusion, exercise-induced sweating and consequent sodium and water loss appear to be a reliable biological link to the blood pressure-reducing effects of exercise in hypertensive individuals. Additionally, the mechanisms underlying exercise-induced blood pressure reduction are complex and involve several biological pathways in the cardiovascular system. Therefore, understanding the role of sweat production in blood pressure management is important for developing effective exercise interventions to prevent and manage hypertension.