Olive orchard is the most representative and iconic crop in Andalusia (Southern Spain). It is also considered one of the major economic activities of this region. However, due to its extensive growing area, olive orchard is also the most water-demanding crop in the Guadalquivir River Basin. In addition, its fertilization is commonly imprecise, which causes over-fertilization, especially nitrogen. This leads to pollution problems in both soil and water, threating the environment and the system sustainability. This concern is further exacerbated by the use of reclaimed water to irrigate since water is already a nutrient carrier. In this work, a model which determines the real-time irrigation and fertilization scheduling for olive orchard, applying treated wastewater, has been developed. The precision fertigation model considers weather information, both historical and forecast data, soil characteristics, hydraulic characteristics of the system, water allocation, tree nutrient status, and irrigation water quality. As a result, daily information about irrigation time and fertilizer quantity, considering the most susceptible crop stage, is provided. The proposed model showed that by using treated wastewater, additional fertilization was not required, leading to significant environmental benefits but also benefits in the total farm financial costs.