Complementarities between wind and wave energies have many significant advantages that are unavailable with the sole deployment of either. Using all available wind speed, significant wave height, and wave period buoy observations over a 10-year period (i.e., 2009–2019), colocated wind and wave energy resources are estimated. Although buoy records are imperfect, results show that the inner Caribbean Sea (CS) under the influence of the Caribbean low-level jet has the highest wind energy resource at ~ 1500 W/m
2
, followed by the outer CS at ~ 600 W/m
2
and Atlantic Ocean (AO) at ~ 550–600 W/m
2
at a 100 m height. Wave energy was most abundant in the AO at 14 kW/m, followed by the inner CS at 13 kW/m and outer CS at 5 kW/m. The average and dominant wave energies can reach a maximum of 10 and 14 kW/m, respectively. Asymmetry between wind and wave energy resources is observed in the AO, where wave energy is higher than the low wind speed/energy would suggest. Swell is responsible for this discrepancy; thus, it must be considered not only for wave energy extraction but also for wind turbine fatigue, stability, and power extraction efficiency.