Acrylic-based polymers have many currently important biomedical applications such as contact lenses, corneal prosthesis, bone cements, tissue engineering, etc. due to their excellent biocompatibility and suitable performance in mechanical properties, among many other applications. Many of these biomaterials have been approved by the US Food and Drug Administration (FDA) for various applications. However, the potential uses of these polymeric materials in the biomedical industry could be increased exponentially if some of their acrylic properties (mechanical strength, electrical and/or thermal properties, water sorption and diffusion, biological interactions, antibacterial activity, porosity, etc.) are enhanced. Thus, acrylics have been fabricated as multicomponent polymeric systems in the form of interpenetrated polymer networks or combined with other advanced materials such as fibers, nanofibers, graphene and its derivatives and/or many other kinds of nanoparticles to form composite or nanocomposite materials, which are expected to exhibit superior properties. Besides, in regenerative medicine, acrylic scaffolds need to be designed with the required extent and morphology of pores by sophisticated techniques. Even though the great advances have been achieved so far, much research has to be carried out still in order to find new strategies to improve the above-mentioned properties.