The use of o-phthalaldehyde (OPA) in combination with a thiol reagent is a common method for detecting primary amines in amino acids, peptides, and proteins. Despite its widespread use, the exact reaction mechanism has been debated since the 1980s. Here, we measure the kinetics of the reaction between OPA, alanine, and a dithiol (1,4-dithiolthreitol, DTT) as a function of pH and reagent concentration. Using these new measurements and accompanying kinetic models, we find evidence that the pH dependence of the kinetics arises from both the protonation states of alanine and DTT, the hydration state of OPA, and the unproductive equilibrium with DTT, all of which are pH-dependent. These results support the mechanism originally proposed by Sternson et al. [Rational design and evaluation of improved o-phthalaldehyde-like fluorogenic reagents.