Abstract. Virtual binocular sensors, composed of a camera and catoptric mirrors, have become popular among machine vision researchers, owing to their high flexibility and compactness. Usually, the tested target is projected onto a camera at different reflection times, and feature matching is performed using one image. To establish the geometric principles of the feature-matching process of a mirror binocular stereo vision system, we proposed a single-camera model with the epipolar constraint for matching the mirrored features. The constraint between the image coordinates of the real target and its mirror reflection is determined, which can be used to eliminate nonmatching points in the feature-matching process of a mirror binocular system. To validate the epipolar constraint model and to evaluate its performance in practical applications, we performed realistic matching experiments and analysis using a mirror binocular stereo vision system. Our results demonstrate the feasibility of the proposed model, suggesting a method for considerable improvement of efficacy of the process for matching mirrored features.