A person's privacy has become a growing concern, given the nature of an expansive reliance on real-time video activities with video capture, stream, and storage. This paper presents an innovative system design based on a privacy-preserving model. The proposed system design is implemented by employing an enhanced capability that overcomes today's single parameterbased access control protection mechanism for digital privacy preservation. The enhanced capability combines multiple access control parameters: facial expression, resource, environment, location, and time. The proposed system design demonstrated that a person's facial expressions combined with a set of access control rules can achieve a person's privacy-preserving preferences. The findings resulted in different facial expressions successfully triggering a person's face to be blurred and a person's privacy when using a real-time video conferencing service captured from a webcam or virtual webcam. A comparison analysis of capabilities between existing designs and the proposed system design shows enhancement of the capabilities of the proposed system. A series of experiments exercising the enhanced, real-time multi-parameterbased system was shown as a viable path forward for preserving a person's privacy while using a webcam or virtual webcam to capture, stream, and store videos.