Combination chemotherapy
has become a treatment modality for breast
cancer. However, serious side effects and high cytotoxicity associated
with this combination therapy make it a high-risk method for breast
cancer treatment. This study evaluated the anticancer effect of decorated
niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI)
in vitro
(on SKBR3 and 4T1 breast cancer cells) and
in vivo
on BALB/c mice. For this purpose, polyethylene glycol
(PEG) and folic acid (FA) were employed to prepare a functionalized
niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited
desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS
and EPI, respectively. Moreover, cellular assays disclosed that a
CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and
EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3
and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI).
For FPNCE and NCE groups, the expression levels of
Bax
,
Caspase3
,
Caspase9
, and
Mfn1
genes increased, whereas the expression of
Bcl2
,
Drp1
,
MMP-2
, and
MMP-9
genes was downregulated. Histopathology results showed
a reduction in the mitosis index, invasion, and pleomorphism in BALB/c
inbred mice with NCE and FPNCE treatment. In this paper, for the first
time, we report a niosomal nanocarrier functionalized with PEG and
FA for codelivery of CIS and EPI to treat breast cancer. The results
demonstrated that the codelivery of CIS and EPI through FA-PEGylated
niosomes holds great potential for breast cancer treatment.