“…Lanthanum oxide nanoparticles [56], lithium iron phosphate (LiFePO 4 ) nanoparticles [57], NiO nanoparticles [58], zinc oxide nanoparticles [59], ZnO nanoparticles formation by reactions of bulk Zn with H 2 O and CO 2 [60], CFD simulation of ZnO nanoparticle synthesis [61], hafnium oxide nanoparticles [62], effect of cations and anions on properties of zinc oxide particles [63], metallic cobalt nanoparticles [64], Bi 2 Te 3 nanoparticles [65], g-Al 2 O 3 nanoparticles [66], Perovskite oxide Ca 0.8 Sr 0.2 Ti 1Àx Fe x O 3Àd (CTO) nanoparticles [67], anatase TiO 2 nanoparticles [68], nanoparticulate yttrium aluminum garnet [69], CoFe 2 O 4 nanoparticles [70], YVO 4 and rare earth-doped YVO 4 ultrafine particles [71], lithium iron phosphate (LiFePO 4 ) [72], YAG monodispersed particles [73], luminescent yttrium aluminum garnet (Y 3 Al 5 O 12 ) [74], copper manganese oxide nanocrystals [75], Zn 2 SiO 4 :Mn 2þ fine particles [76], iron nanoparticles [77], iron oxide (a-Fe 2 O 3 ) nanoparticles in activated carbon [78], high-temperature LiCoO 2 [78,90], KNbO 3 powders [79], MgFe 2 O 4 nanoparticles [80], Zn 2 SnO 4 anode material (synthesized in batch mode) [81], lithium iron phosphate particles [82], ZnGa 2 O 4 :Mn 2þ nanoparticles [83], magnetite particles [84], and lithium iron phosphate (LiFePO 4 ) nanoparticles [85], boehmite nanoparticles [89]. Formation of fine particles during hydrothermal and supercritical water synthesis of compounds is due to the extremely high hydrolysis reaction rate and the low solubility of produced compounds in supercritical water.…”