Substantiation of using non-circular plain shaped surfaces to increase the compactness of power plants is presented. The criterion of thermohydraulic compactness is justified, which takes into account the layout and arrangement of heat transfer elements and their thermohydraulic efficiency.To simulate heat movement and transfer processes in elements of power plants, the computational fluid dynamics method is used. Verification is carried out with available literature data, the discrepancy of results does not exceed 2.4 %. For single elliptical and planeoval shapes, there is a local maximum of efficiency, achieved at the axis ratio of 2.5 for elliptical and 2.75 for plane-oval.
Studies of the change of the heat transfer coefficient in the tube bank rows are carried out. For the elliptical tube bank, heat transfer is stabilized from the fifth row. Heat transfer surfaces of circular, elliptical and plane-oval tubes with different combinations of geometric characteristics are considered. It is found that on the basis of elliptical tubes it is possible to reduce the volume of the heat transfer surface and increase the compactness of the entire power plant by 18.3 % compared to circular tubes and 2.4 % compared to flat-oval ones. Dimensionless indices of mass, volume, functional efficiency and service life of the heat exchanger are substantiated, allowing them to be compared as part of various power plants. It is advisable to continue studies of the features of heat transfer processes in close, with the relative longitudinal and transverse pitch ratio less than 1.5, banks of elliptical tubes with an axis ratio of 2.5