2020
DOI: 10.1038/s41598-020-75721-2
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing aphid detection framework based on ORB and convolutional neural networks

Abstract: Methods to detect directly aphids based on convolutional neural networks (CNNs) are unsatisfactory because aphids are small and usually are specially distributed. To enhance aphid detection efficiency, a framework based on oriented FAST and rotated BRIEF (ORB) and CNNs (EADF) is proposed by us to detect aphids in images. Firstly, the key point is to find regions of aphids. Points generated by the ORB algorithm are processed by us to generate suspected aphid areas. Regions are fed into convolutional networks to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 32 publications
0
4
0
4
Order By: Relevance
“…We plan to deploy our models on mobile devices and use them in the field. It is noteworthy that new pest benchmarks have ad-dressed tiny regions [6,7,41]. Introducing images with small ROIs may become frequent in pest datasets because pests often represent small areas in uncontrolled field images.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…We plan to deploy our models on mobile devices and use them in the field. It is noteworthy that new pest benchmarks have ad-dressed tiny regions [6,7,41]. Introducing images with small ROIs may become frequent in pest datasets because pests often represent small areas in uncontrolled field images.…”
Section: Discussionmentioning
confidence: 99%
“…New works have studied tiny insects. For example, the following works detected and localized aphids in wild conditions [6,7], and counted and classified aphids in controlled environments [41]. Aphids are small but visible, unlike some species of mites, which are unrecognizable without magnification.…”
Section: Weakly Supervised Learningmentioning
confidence: 99%
See 1 more Smart Citation
“…Outro desafio importante é a inadequação das técnicas existentes de aprendizado profundo para extrair características de áreas muito pequenas durante o decorrer do processo de classificação de imagens [102,139,190]. As arquiteturas são normalmente propostas para tarefas gerais e de ponta a ponta -treinadas de forma única e monolítica -, pois os extratores de características, na maior parte das redes, são construídos com downsampling (reduções), que descartam características mais finas em detrimento de dados semanticamente mais gerais.…”
Section: Motivações E Desafiosunclassified
“…Lins et al [110] também trabalharam com pulgões e apresentaram uma ferramenta para automatizar sua contagem e classificação usando métodos de processamento de imagem, visão computacional e DNNs para classificar características locais. Pei et al [139] argumentaram que métodos para detectar pulgões baseados em DNNs seriam insatisfatórios porque os pulgões seriam pequenos e, em geral, espacialmente distribuídos. Eles utilizaram descritores locais binários para encontrar regiões que possivelmente teriam pulgões e produzir localizações aplicando redes convolucionais para essas regiões.…”
Section: Trabalhos Informações Relevantes Anounclassified