In the field of phononics, periodic patterning controls vibrations and thereby the flow of heat and sound in matter. Bandgaps arising in such phononic crystals realize low-dissipation vibrational modes and enable applications towards mechanical qubits, efficient waveguides, and state-of-the-art sensing. Here, we combine phononics and two-dimensional materials and explore the possibility of manipulating phononic crystals via applied mechanical pressure. To this end, we fabricate the thinnest possible phononic crystal from monolayer graphene and simulate its vibrational properties. We find a bandgap in the MHz regime, within which we localize a defect mode with a small effective mass of 0.72 ag = 0.002 mphysical. Finally, we take advantage of graphene’s flexibility and mechanically tune a finite size phononic crystal. Under electrostatic pressure up to 30 kPa, we observe an upshift in frequency of the entire phononic system by more than 350%. At the same time, the defect mode stays within the bandgap and remains localized, suggesting a high-quality, dynamically tunable mechanical system.