Background: The integration of artificial intelligence (AI) into various fields has ushered in a new era of multidisciplinary progress. Defined as the ability of a system to interpret external data, learn from it, and adapt to specific tasks, AI is poised to revolutionize the world. In forensic medicine and pathology, algorithms play a crucial role in data analysis, pattern recognition, anomaly identification, and decision making. This review explores the diverse applications of AI in forensic medicine, encompassing fields such as forensic identification, ballistics, traumatic injuries, postmortem interval estimation, forensic toxicology, and more. Results: A thorough review of 113 articles revealed a subset of 32 papers directly relevant to the research, covering a wide range of applications. These included forensic identification, ballistics and additional factors of shooting, traumatic injuries, post-mortem interval estimation, forensic toxicology, sexual assaults/rape, crime scene reconstruction, virtual autopsy, and medical act quality evaluation. The studies demonstrated the feasibility and advantages of employing AI technology in various facets of forensic medicine and pathology. Conclusions: The integration of AI in forensic medicine and pathology offers promising prospects for improving accuracy and efficiency in medico-legal practices. From forensic identification to post-mortem interval estimation, AI algorithms have shown the potential to reduce human subjectivity, mitigate errors, and provide cost-effective solutions. While challenges surrounding ethical considerations, data security, and algorithmic correctness persist, continued research and technological advancements hold the key to realizing the full potential of AI in forensic applications. As the field of AI continues to evolve, it is poised to play an increasingly pivotal role in the future of forensic medicine and pathology.