Size and thermal effect on molar heat capacity of liquid at constant volume (Cv) on a nanometer scale have been investigated by controlling the temperature and density of the liquid domain using equilibrium molecular dynamics (EMD) simulations. Lennard-Jones (LJ) type molecular model with confinement gap thickness (h) 0.585 nm to 27.8 nm has been used with the temperature (T) ranging from 100 K to 140 K. The simulation results revealed that the heat capacity of the nanoconfined liquid surpasses that of the bulk liquid within a defined interval of gap thickness; that the temperature at which maximum heat capacity occurs for a nanoconfined liquid vary with gap thickness following a power law, TCv,max = 193.4 × (h/a)−0.3431, ‘a’ being the lattice constant of Argon (solid) at 300 K; and that for a specified gap thickness and temperature, the confined liquid can exhibit a heat capacity that can be more than twice the heat capacity of the bulk liquid. The increase in heat capacity is underpinned by an increase in non-configurational (phonon and anharmonic modes of vibration) and configurational (non-uniform density distribution, enhanced thermal resistance, guided molecular mobility, etc.) contributions.