2022
DOI: 10.2166/wpt.2022.151
|View full text |Cite
|
Sign up to set email alerts
|

Estimation of hydraulic conductivity of porous media using data-driven techniques

Abstract: Knowledge of hydraulic conductivity (K) is inevitable for sub-surface flow and aquifer studies. Hydrologists and groundwater researchers are employing data-driven techniques to indirectly evaluate K using porous media characteristics as an alternative to direct measurement. The study examines the ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the K of porous media using two membership functions (MFs), i.e., triangular and Gaussian, and support vector machine (SVM) via four kernel funct… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 28 publications
0
0
0
Order By: Relevance