Background
Vitamin D Deficiency is recognized as a pandemic, which is associated with high mortality. An inadequate level of vitamin D is associated with autoimmune diseases, hypertension, and cancer. The study was aimed to assess the pharmacological effects of chronic vitamin D3 supplementation on the manipulation diet regiment of deprived cholecalciferol (vitamin D3 deficient diet, VDD) rats.
Methods
Memory performance (Y-maze task), muscular function (muscle grip strength), and pain score (pressure application measurement meter) were measured. Functional biomarkers were measured using ELISA method in different matrix viz. in serum (parathyroid hormone; PTH, calcitonin, thyroxine, and C-reactive protein; CRP, 25-OH Vit D3), and in CSF (klotho and β-endorphin). 25-OH Vit D3 was also estimated in liver and kidney homogenate using ELISA. Vitamin D receptor (VDR) was measured spectrophotometrically in liver and adipose tissue.
Results
VDD-induced rats showed a decrease in number of entries and time spent in the novel arm and spontaneous alternations in the Y-maze task. Significant improvements of neuromuscular function and pain score after addition of vitamin D3. In comparison to the VDD group, VDR expression (liver) and active metabolites of vitamin D3 (25-OH vit.D3) in serum were significantly higher by 48.23% and 280%, respectively. The PTH and CRP levels were significantly reduced by 32.5% and 35.27%, respectively, whereas calcitonin was increased by 36.67% compared with the VDD group. Klotho and β-endorphin expressions in cerebrospinal fluid were significantly elevated by 19.67% and 133.59%, respectively, compared to VDD group.
Conclusions
Overall, the results indicate that supplementation of cholecalciferol significantly improved spatial memory impairment, VDR expression, and may provide an opportunity to manage vitamin D deficiencies.