Previous research has shown that the class C beta-lactamase of Enterobacter cloacae P99 is able to catalyze the hydrolysis and aminolysis of acyclic depsipeptides. The steady kinetics of these reactions are complicated by the presence of an additional (depsi)peptide binding site in addition to the active site [Pazhanisamy, S., & Pratt, R. F. (1989) Biochemistry 28, 6875-6882]. The present paper presents a steady-state kinetic analysis of the inhibition of depsipeptide hydrolysis by sodium benzylpenicilloate, methyl benzylpenicilloate, 6-aminopenicillanic acid, and 7-aminocephalosporanic acid. The two beta-lactams are considerably poorer substrates than the depsipeptide employed, m-[[(phenylacetyl)glycyl]oxy]benzoic acid. The aim was to determine the relative affinity of these ligands for the active site and the second site. Three types of experiments were employed: (i) measurements of direct inhibition of depsipeptide hydrolysis, (ii) measurements of the effect of an active-site-directed inhibitor, m-(dansylamidophenyl)-boronic acid, on the effectiveness of the ligands as inhibitors, and (iii) measurements of the effect of a preferential second site ligand, N-(phenylacetyl)glycyl-D-phenylalanine, on the effectiveness of the ligands as inhibitors. The results suggest that all four ligands preferentially bind to the active site, with weaker binding at the second site. The necessarily weaker binding of a ligand to the second site when the active site is occupied by a transition-state analog inhibitor was analyzed. Perhaps surprisingly, the intact beta-lactams appeared to bind more firmly to the alternative site than do the flexible penicilloates.(ABSTRACT TRUNCATED AT 250 WORDS)