ObjectivesIntracerebral hemorrhage (ICH) and cerebral microbleeds (CMB) in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy are more common in East Asian populations than in people of white European ancestry. We hypothesized that the ethnic difference is explained by the East Asian‐specific NOTCH3 p.R75P mutation.MethodsThis retrospective observational study included 118 patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in Japanese and Korean cohorts. We investigated whether the p.R75P mutation is associated with symptomatic ICH and multiple CMB (>5) using quasi‐Poisson regression models. We predicted the NOTCH3 extracellular domain protein structures in silico and graded NOTCH3 extracellular domain immunostaining in skin vessels of some patients, with subsequent comparisons between p.R75P and other conventional mutations.ResultsAmong 63 Japanese patients (median age 55 years; 56% men), 15 had a p.R75P mutation, significantly associated with symptomatic ICH (adjusted relative risk 9.56, 95% CI 2.45–37.31), multiple CMB (3.00, 1.34–6.71), and absence of temporopolar lesions (4.91, 2.29–10.52) after adjustment for age, sex, hypertension, and antithrombotics. In the Korean cohort (n = 55; median age 55 years; 51% men), the p.R75P mutation (n = 13) was also associated with symptomatic ICH (8.11, 1.83–35.89), multiple CMB (1.90, 1.01–3.56), and absence of temporopolar lesions (2.32, 1.08–4.97). Structural analysis revealed solvent‐exposed free cysteine thiols in conventional mutations, directly causing aggregation, whereas a stereochemically incompatible proline residue structure in p.R75P lowers correct disulfide bond formation probability, indirectly causing aggregation. Pathologically, the p.R75P mutation resulted in less vascular NOTCH3 extracellular domain accumulation than the other conventional mutations.InterpretationNOTCH3 p.R75P mutation is associated with hemorrhagic presentations, milder temporopolar lesions, and distinct mutant protein structure properties. ANN NEUROL 2024