ABSTRACT:In this work, a thermoplastic sandwich panel was designed, produced, and tested for use in insulating walls of containers for food transportation. A sandwich construction comprising a poly(ethylene terephthalate) core and polypropylene/glass fiber skins was evaluated as possible replacement of systems consisting of polyurethane foam in combination with unsaturated polyester glass-reinforced skins that are currently used for the manufacture of these structures. Factors were taken into account to satisfy the simultaneous need of thermal insulation and adequate mechanical properties that are required for the production of large flat panels 100-mm thick. The influences of different manufacturing processes and skin-core adhesion on the mechanical properties of this thermoplastic sandwich were investigated and are discussed in This paper was presented at the conference ICCM-17 on Thermoplastic Matrix Composites.