Flow-through porous media is concerned with the term hydraulic conductivity (K), which imparts a crucial role in the groundwater processes. The present work examines the impact of key parameters i.e., grain size and porosity on the K of four borehole soil samples (Gravelly, Coarse, Medium, and Fine sands) and evaluates the applicability of seven empirical relationships for K estimation. Experimental investigations postulate that an increase in the grain size and porosity value increases the K value. Further, the K values computed using the Kozeny–Carman relationship proved to be the best estimator for Coarse, medium, and fine sands followed by Beyer and Hazen relationships. However, the Beyer relationship had a closer agreement with experimentally obtained value for Gravelly sand. Alyamani and Sen relationship is very sensitive toward the grain-size curve pattern, hence it should be used carefully. Whereas other relationships considered in this study underestimated the K of all samples.