The increase of awareness with sustainability and the desire of reducing the energy consumption in the construction sector haved increased the application of External Thermal Insulation Composite Systems (ETICS) across Europe in the last decades. Nevertheless, the implementation of appropriate maintenance strategies is still neglected. The aim of this study is to analyse the impact of different maintenance strategies. For that purpose, a condition-based maintenance model, based on Petri nets, is used to evaluate three maintenance strategies: MS1—total replacement only; MS2—combination of minor intervention and total replacement; and MS3—combination of cleaning operations, minor intervention, and total replacement. In the end, a multi-criteria analysis is used to discuss the impact of the three maintenance strategies proposed, evaluating the remaining service life, the global costs over time, the ETICS’ degradation condition, and the number of replacements (end of service life) over the time horizon. For this purpose, a sample of 378 ETICS was analysed, based on in situ visual inspections, carried out in Portugal. The results from this study reveal that maintenance plays an important role to increase the durability of ETICS, and therefore their sustainability. Regular maintenance can promote the extension of the ETICS’s service life between 88% and 159% (between 15 to 27 years), improve the global degradation condition of the ETICS, and reduce the impact on users by reducing the number of deeper interventions. Further research is essential to optimise the maintenance strategies (time interval between inspections, stakeholders’ performance criteria, and environmental exposure).