2016
DOI: 10.1155/2016/1810795
|View full text |Cite
|
Sign up to set email alerts
|

Explicit Solutions of the Boundary Value Problems for an Ellipse with Double Porosity

Abstract: The basic two-dimensional boundary value problems of the fully coupled linear equilibrium theory of elasticity for solids with double porosity structure are reduced to the solvability of two types of a problem. The first one is the BVPs for the equations of classical elasticity of isotropic bodies, and the other is the BVPs for the equations of pore and fissure fluid pressures. The solutions of these equations are presented by means of elementary (harmonic, metaharmonic, and biharmonic) functions. On the basis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

4
3

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 19 publications
0
5
0
Order By: Relevance
“…Fortunately, Equation ( 4) is ensured by the extremum principle for the parabolic diffusion equation [63], provided that c(x, t = 0) = c 0 (x) ≥ 0. However, in dealing with more complex transport equations, in which the expression for the fluxes has been obtained from continuous thermodynamic theories, the fulfillment of the positivity constraint is far from being guaranteed.…”
Section: Positivity Constraint and Stochastic Representation: The Cas...mentioning
confidence: 99%
“…Fortunately, Equation ( 4) is ensured by the extremum principle for the parabolic diffusion equation [63], provided that c(x, t = 0) = c 0 (x) ≥ 0. However, in dealing with more complex transport equations, in which the expression for the fluxes has been obtained from continuous thermodynamic theories, the fulfillment of the positivity constraint is far from being guaranteed.…”
Section: Positivity Constraint and Stochastic Representation: The Cas...mentioning
confidence: 99%
“…For applications, it is especially important to construct the solutions of BVPs in explicit form because such solutions enable us to effectively perform quantitative analysis of the investigated problems. Questions related to this topic, different types of problems in the theory of elasticity and thermoelasticity of porous materials are considered, for example, in the works [12][13][14][15][16][17][18][19][20][21][22][23][24][25][26], where the explicit solutions are constructed for some BVPs for the concrete domains.…”
Section: Introductionmentioning
confidence: 99%
“…Many problems are investigated for elastic materials with microstructures by several researchers (see [7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24] and references given there).…”
Section: Introductionmentioning
confidence: 99%