Diabatization is a procedure that transforms multiple adiabatic electronic states to a new representation in which the potential energy surfaces and the couplings between states due to the electronic Hamiltonian operator are smooth, and the couplings due to nuclear momentum are negligible. In this work, we propose a simple and general diabatization strategy, called model space diabatization, that is applicable to multiconfiguration quasidegenerateperturbation theory (MC-QDPT) or its extended version (XMC-QDPT). An advantage over previous diabatization schemes is that dynamical correlation calculations are based on standard post-multi-configurational self-consistent field (MCSCF) multi-state methods even though the diabatization is based on state-averaged MCSCF results. The strategy is illustrated here by applications to LiH, LiF, and thioanisole, with the fourfold-way diabatization and XMC-QDPT, and the results illustrate its validity.
KeywordsWave functions, Monte Carlo methods, Potential energy surfaces, Quasicrystals, Eigenvalues
Disciplines
Chemistry
CommentsThe following article appeared in Journal of Chemical Physics 142 (2015) (Received 11 November 2014; accepted 19 January 2015; published online 11 February 2015) Diabatization is a procedure that transforms multiple adiabatic electronic states to a new representation in which the potential energy surfaces and the couplings between states due to the electronic Hamiltonian operator are smooth, and the couplings due to nuclear momentum are negligible. In this work, we propose a simple and general diabatization strategy, called model space diabatization, that is applicable to multi-configuration quasidegenerate perturbation theory (MC-QDPT) or its extended version (XMC-QDPT). An advantage over previous diabatization schemes is that dynamical correlation calculations are based on standard post-multi-configurational self-consistent field (MCSCF) multi-state methods even though the diabatization is based on state-averaged MCSCF results. The strategy is illustrated here by applications to LiH, LiF, and thioanisole, with the fourfoldway diabatization and XMC-QDPT, and the results illustrate its validity. C 2015 AIP Publishing LLC. [http://dx