In this study, oxide/oxide ceramic matrix composite test coupons were quasi‐statically indented and tested for tensile strength and fatigue life in a combustion environment. The combustion environment simulated the gas turbine engine environment in an aircraft. Two different dent sizes were created on two different sets of test coupons with a blunt conical indentor. During mechanical testing, the combustion flame simultaneously impinged on the dent region resulting in a maximum test coupon surface temperature of 1250 ± 50°C. For a life of 90 000 cycles, the fatigue limit in the combustion environment was 85% of the postindentation degraded tensile strength. Microscopy images of the failed test coupons showed damage modes of fiber fracture and matrix cracking at the dent site. The run‐out test coupons which did not fail within 90 000 cycles showed residual strength that was not significantly different from that of their virgin counterparts.