It is essential to enhance the in vitro maturation (IVM) condition for immature oocytes after cryopreservation, particularly if limited numbers of oocytes collected from specific donors. The objective of this study was to determine if quality of vitrified porcine immature oocytes was enhanced by coculturing with fresh oocytes during IVM. To distinguish fresh versus vitrified oocytes, we used two types of coculture systems: (a) transwell two‐chamber coculture; (b) labeling and tracing fresh oocytes with CellTracker™ Green CMFDA during conventional culture. Coculture systems significantly accelerated meiotic progression of vitrified oocytes and significantly increased blastocyst formation rates following parthenogenetic activation and somatic cell nuclear transfer. Reactive oxygen species generation in vitrified oocytes was ameliorated by the coculture conditions, with no significant difference between fresh and vitrified oocytes for intracellular glutathione level. Both coculture systems significantly increased rate of normal mitochondrial distribution in vitrified oocytes, but did not affect fluorescence intensity of mitochondria. The percentage of oocytes with normal endoplasmic reticulum (ER) distribution and ER fluorescence intensity were significantly higher in vitrified oocytes cocultured with fresh oocytes. After 20 hr of IVM, mRNA expression of COX2, HAS2, PTX3, and TNFAIP6 remained significantly higher in cumulus cells derived from vitrified oocytes and coculture systems significantly decreased the expression of these genes. Additionally, coculture methods prevented the reduction of mRNA expression for BMP15, ZAR1, POU5F1, and DNMT3A in vitrified oocytes. In conclusion, oocyte quality and subsequent embryo development of vitrified porcine immature oocytes were significantly improved by fresh oocyte coculture during IVM.