The microstructural and textural evolution of 60% cold-rolling-deformation Er metal (purity ≥ 99.7%) during annealing were investigated by electron-backscattered diffraction (EBSD) and X-ray diffraction (XRD). The research results showed that the texture of the (0001) plane orientation was strengthened, but there was no apparent enhancement of the (011¯0) and (1¯21¯0) plane orientations with increasing the annealing temperature. The recrystallization frequency and grain sizes gradually stabilized after the annealing duration of more than 1 h at 740 °C; the annealing duration and the recrystallization frequency were fitted to the equation: y=1 − exp (−0.3269x0.2506). HAGBs were predominant, and the distribution of grain sizes was the most uniform after annealing at 740 °C × 1 h, which was the optimal annealing process of the Er metal with 60% cold-rolling deformation. However, the recrystallization was transferred to the substructure due to grain boundary migration and twining under an excessive annealing temperature and duration.