The aim of this work is to demonstrate the efficiency of fiber Bragg grating sensors to be used for in situ railway monitoring and train tracking applications. In the specific case, FBGs (Fiber Bragg Gratings) sensors have been bonded to rails in order to perform two different kinds of measurements: dynamic strain to analyze the characteristic frequency response of the rail and train tracking (speed and rail deformation when loaded by running trains). The efficiency of the sensing system has been verified in terms of significance of the information retrieved by the sensing data resolution and the high speed response. The obtained results confirm the real possibility to adopt fiber optic sensors based on FBG technology as excellent devices to ensure multipoint monitoring of railway structures taking advantages of the typical peculiarities of FBG such as long distance interrogation, easy multiplexing, electromagnetic interferences immunit