Natural fiber/degradable epoxy composites have received much attention for their advantages of low carbon emissions, low environmental pollution, and utilization of renewable resources. However, the poor interfacial bonding strength and inferior moisture resistance of natural fiber/degradable epoxy composites restrict their application areas. In order to improve the moisture and heat resistance of natural fiber/degradable epoxy resin-based composites, this study modified the surfaces of ramie fibers with hydroxylated carbon nanotubes, silane coupling agents, and sodium hydroxide, respectively. Three types of modified ramie fiber/degradable epoxy composites, namely F-CN-DEP, F-Si-DEP, and F-OH-DEP, were prepared using a winding forming process. The water absorption rate and short-beam shear strength of the materials were tested under different environments, and the fiber morphology and thermal–mechanical properties of the materials were investigated by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). The results show that F-CN-DEP exhibited the lowest moisture absorption rate; the highest shear strength, of 43.8 MPa; and a glass transition temperature (Tg) of 121.7 °C. The results demonstrate that carbon nanotubes on the fiber surface can improve the interfacial stability of ramie fiber/degradable epoxy composites in humid and hot environments. These results give guidelines for the development of natural fiber/degradable epoxy composites.