Neste estudo, investigamos a capacidade de variáveis antecedentes, entre elas internações por agressão, na previsão do número de homicídios no Brasil. O objetivo principal desta pesquisa é suprimir a lacuna referente à defasagem de informações na divulgação sobre homicídios no país, permitindo assim análises conjunturais atualizadas. Para tanto, por intermédio do esquema rolling window e da abordagem model confidence set (MCS), investigamos se modelos de variáveis antecedentes apresentam desempenho preditivo superior ao conjunto de modelos univariados. Ao aplicar a abordagem MCS, considerando diferentes estatísticas de avaliação, funções de perda e janelas de estimação, encontramos fortes evidências da capacidade das variáveis antecedentes utilizadas fornecerem conteúdo informacional adicional na previsão da dinâmica criminal brasileira, com modelos de variáveis antecedentes sistematicamente superando modelos univariados. Na média, os melhores modelos de variáveis antecedentes apresentam melhorias relativas ao benchmark random walk, de 60% em termos de raiz do erro quadrado médio (RMSE), erro absoluto médio (MAE) e desvio absoluto médio da média (MAD).