In this paper, the influence of variable molar ratios between reducing and loading agents (1:100, 1:50, 1:20, 1:10, 1:5, 1:2, 1:1, 2:1) and between protective and loading agents (0.3:1, 0.75:1, 1.5:1, 3:1, 7.5:1, 30:1, 75:1) in the synthesis of silver nanoparticles by chemical reduction has been evaluated to obtain multicolor nanoparticles with a high stability in time. The protective agent poly(acrylic acid, sodium salt) (PAA) and reducing agent dimethylaminoborane (DMAB) play a key role in the formation of the resultant color. Evolution of the optical absorption bands of the silver nanoparticles as a function of PAA and DMAB molar ratios made it possible to confirm the presence of silver nanoparticles or clusters with a specific shape. The results reveal that a wide range of colors (violet, blue, green, brown, yellow, red, orange), sizes (from nanometer to micrometer), and shapes (cubic, rod, triangle, hexagonal, spherical) can be perfectly tuned by means of a fine control of the PAA and DMAB molar concentrations.