Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells are a promising cell source for drug screening and toxicity tests. Thus, various hepatic differentiating protocols have been developed, leading to a hepatic differentiation efficiency of approximately 90%. However, HLC drug metabolizing ability remains very low compared to human primary hepatocytes. In order to overcome this problem, several alternative methods, such as, co-culture, three-dimensional (3D) culture, bioreactor, nanochip-based, etc., have been developed, but optimization to produce fully functional HLCs is ongoing. Recently, our group reported that repeated exposure of HLCs to xenobiotics can improve the expression of hepatic metabolizing enzymes such as cytochrome P450s (CYPs) and glutathione S-transferases (GSTs). These data suggest that we should develop strategies for differentiating cells into mature HLCs by more closely mimicking in vivo fetal and postnatal liver development. Here, we review the current development of alternative methods for enhancing the drug metabolizing functions of HLCs derived from human embryonic stem cells, humaninduced pluripotent stem cells, and mesenchymal stem cells as used for drug screening and toxicity tests. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.