With the construction of periodic functions relative to the meshing frequency, rotating frequency, and the faulty frequency, etc., the phenomenological model provides a simple and effective way of representing the vibration signal of the planetary gearbox. However, due to that the meshing vibration is simplified, the traditional model can only reflect the modulation characteristic of the signal, but not the impact characteristic. Therefore, an improved phenomenological model is proposed, which can satisfy these two characteristics of the vibration signal at the same time. To consider the meshing vibration correctly, two key points should be determined: occurring moment of impact signals, and their relative amplitudes. In order to calculate the occurring time, this paper proposes modifying the reference point of the meshing phase and using the modified phases to represent it. Then two experiments are designed to verify the correctness of the modified phases and the occurring moment. Fortunately, these experimental results also provide a factual basis for determining the relative amplitudes of these impact signals. Subsequently, signal model of the gearbox in the healthy state is established based on the meshing vibration characteristics. The simulation results show that the new model can satisfy the modulation and impact characteristics. In addition, combined with the time-varying meshing stiffness of the gear pair, the paper theoretically analyzes the influence of fault type, location, and size on the impact frequency in a fault meshing period. Finally, the correctness of the new phenomenological model is verified by experiments.