Owing to the growing need for natural materials in different fields, studying melanin production from biological sources is imperative. In the current study, the extracellular melanin pigment was produced by the fungus Curvularia soli AS21 ON076460. The factors that affect the production of melanin were optimized by the Plackett-Burman design (P-BD). The effect of gamma irradiation on melanin productivity was investigated. The maximum melanin yield (3.376 mg/L) was elicited by a stimulus of gamma irradiation at 1.0 kGy. The results evoked that, Curvularia soli AS21 ON076460 melanin exhibited excellent antimicrobial activity against all tested bacteria and fungi. Klebsiella pneumoniae ATCC 13883 and P. digitatum were mostly affected by melanin registering the inhibition zone diameters of 37.51 ± 0.012 and 44.25 ± 0.214 mm, respectively. Moreover, Curvularia soli AS21 ON076460 melanin indicated a significant antiviral efficacy (77% inhibition) of Herpes simplex virus (HSV1). The melanin pigment showed antioxidant activities with IC50 of 42 ± 0.021 and 17 ± 0.02 µg/mL against DPPH and NO, respectively. Melanin had cytotoxic action against human breast cancer and skin cancer cell lines (Mcf7and A431) as well as exerting a low percentage of cell death against normal skin cell lines (Hfb4). Melanin was effective in wound management of human skin cells by 63.04 ± 1.83% compared with control (68.67 ± 1.10%). The novelty in the study is attributed to the possibility of using gamma rays as a safe method in small economic doses to stimulate melanin production from the fungi that have been isolated. In summary, melanin produced from fungi has significant biological activities that encourage its usage as a supportive medical route.