“…Several classical machine learning techniques have been used to approach imagined speech decoding for EEG-based BCI systems. Some on the most common algorithms include Linear Discriminant Analysis (LDA) (Chi et al, 2011 ; Song and Sepulveda, 2014 ; Lee et al, 2021b ), Support Vector Machines (SVM) (DaSalla et al, 2009 ; Garćıa et al, 2012 ; Kim et al, 2013 ; Riaz et al, 2014 ; Sarmiento et al, 2014 ; Zhao and Rudzicz, 2015 ; Arjestan et al, 2016 ; González-Castañeda et al, 2017 ; Hashim et al, 2017 ; Cooney et al, 2018 ; Moctezuma and Molinas, 2018 ; Agarwal and Kumar, 2021 ), Random Forests (RF) (González-Castañeda et al, 2017 ; Moctezuma and Molinas, 2018 ; Moctezuma et al, 2019 ), k-Nearest-Neighbors (kNN) (Riaz et al, 2014 ; Bakhshali et al, 2020 ; Agarwal and Kumar, 2021 ; Rao, 2021 ; Dash et al, 2022 ), Naive Bayes (Dash et al, 2020a ; Agarwal and Kumar, 2021 ; Iliopoulos and Papasotiriou, 2021 ; Lee et al, 2021b ), and Relevance Vector Machines (RVM) (Liang et al, 2006 ; Matsumoto and Hori, 2014 ). Furthermore, deep learning approaches have recently taken a huge role for imagined speech recognition.…”