the aim of the current study was to suggest a multi-hazard probability assessment in fars province, Shiraz City, and its four strategic watersheds. At first, we construct maps depicting the most effective factors on floods (12 factors), forest fires (10 factors), and landslides (10 factors), and used the Boruta algorithm to prioritize the impact of each respective factor on the occurrence of each hazard. Subsequently, flood, landslides, and forest fire susceptibility maps prepared using a Random Forest (RF) model in the R statistical software. Results indicate that 42.83% of the study area are not susceptible to any hazards, while 2.67% of the area is at risk of all three hazards. The results of the multi-hazard map in Shiraz City indicate that 25% of Shiraz city is very susceptible to flooding, while 16% is very susceptible to landslide occurrences. for four strategic watersheds, it is notable that in the Dorodzan Watershed, landslides and floods are the most important hazards; whereas, flood occurrences cover the largest area of the Maharlou Watershed. In contrast, the Tashk-Bakhtegan Watershed is so sensible to floods and landslides, respectively. Finally, in the Ghareaghaj Watershed, forest fire ranks as the strongest hazard, followed by floods. The validation results indicate an AUC of 0.834, 0.939, and 0.943 for the flood, landslide, and forest fire susceptibility maps, respectively. Also, other accuracy measures including, specificity, sensitivity, TSS, CCI, and Gini coefficient confirmed results of the AUC values. These results allow us to forecast the spatial behavior of such multi-hazard events, and researchers and stakeholders alike can apply them to evaluate hazards under various mitigation scenarios.The Sendai Framework, with its comprehensive vision, recommends more efforts to decrease disaster risk and increase sustainable development. Especially communities who are increasingly susceptible to natural hazards should adhere to these guidelines and plan accordingly. In this regard, the multi-hazard approach is often used in risk reduction projects and studies addressing risks associated with human activities or climate change on a regional and local scale 1 . It is obvious that introducing a universal set of multi-hazard assessment techniques is of fundamental importance for reducing disaster risk, and constitutes a valuable asset to share with other stakeholders, including the private sectors, local governments, and other stakeholders.The use of the term multi-hazard in the current research is related to the objective of risk reduction among natural hazards, including flood, landslides, and forest fires, in a specified spatial distribution in this study 2,3 . Recently, susceptibility modeling approaches related to single processes have advanced considerably for river floods 4 and landslides 5-7 . However, there is still neither a common terminology nor a uniform conceptual approach for analyzing multiple hazards in conjunction. This is not unexpected because multi-hazard analyses are not the sum of ...