The medium composition was crucial for achieving the best performance of synthetic construction. What and how medium components determined the production of the synthetic construction remained poorly investigated. To address the questions, a comparative survey with two genetically engineered Escherichia coli strains was performed. As a case study, the strains carried the synthetic pathways for producing the aromatic compounds of 4APhe or Tyr, which were common in the upstream but differentiated in the downstream metabolism. Bacterial growth and compound production were examined in hundreds of medium combinations that comprised 48 pure chemicals. The resultant data sets linking the medium composition to bacterial growth and production were subjected to machine learning for improved production. Intriguingly, the primary medium components determining the production of 4PheA and Tyr were differentiated, which were the initial resource (glucose) of the synthetic pathway and the inducer (IPTG) of the synthetic construction, respectively. Fine-tuning of the primary component significantly increased the yields of 4APhe and Tyr, indicating that a single component could be crucial for the performance of synthetic construction. Transcriptome analysis observed the local and global changes in gene expression for improved production of 4APhe and Tyr, respectively, revealing divergent metabolic strategies for producing the foreign and native metabolites. The study demonstrated that ML-assisted medium optimization could provide a novel point of view on how to make the synthetic construction meet the original design.