2005
DOI: 10.1016/j.jhydrol.2004.12.001
|View full text |Cite
|
Sign up to set email alerts
|

Groundwater level forecasting using artificial neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
258
0
5

Year Published

2010
2010
2022
2022

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 568 publications
(264 citation statements)
references
References 15 publications
1
258
0
5
Order By: Relevance
“…They are capable of providing a neuron computing approach to solve complex problems. In the last decade, ANNs have been widely successfully applied to various water resources problems, such as hydrological processes (Nayak et al 2004;Sahoo et al 2005;Dastorani et al 2010;Guo et al 2011;Wu and Chau 2011;Senkal et al 2012), water resources management (Kralisch et al 2003;Sreekanth and Datta 2010), groundwater problems (Daliakopoulos et al 2005;Dixon 2005;Garcia and Shigidi 2006;Nayak et al 2006;Ghose et al 2010;Banerjee et al 2011), and water quality (Ha and Stenstrom 2003;Kuo et al 2006;Anctil et al 2009;da Costa et al 2009;Dogan et al 2009;Chang et al 2010;He et al 2011). ANNs also have been used for modeling and forecasting DO (Kuo et al 2007;Singh et al 2009;Ranković et al 2010;Najah et al 2011).…”
Section: Introductionmentioning
confidence: 99%
“…They are capable of providing a neuron computing approach to solve complex problems. In the last decade, ANNs have been widely successfully applied to various water resources problems, such as hydrological processes (Nayak et al 2004;Sahoo et al 2005;Dastorani et al 2010;Guo et al 2011;Wu and Chau 2011;Senkal et al 2012), water resources management (Kralisch et al 2003;Sreekanth and Datta 2010), groundwater problems (Daliakopoulos et al 2005;Dixon 2005;Garcia and Shigidi 2006;Nayak et al 2006;Ghose et al 2010;Banerjee et al 2011), and water quality (Ha and Stenstrom 2003;Kuo et al 2006;Anctil et al 2009;da Costa et al 2009;Dogan et al 2009;Chang et al 2010;He et al 2011). ANNs also have been used for modeling and forecasting DO (Kuo et al 2007;Singh et al 2009;Ranković et al 2010;Najah et al 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, one of the main benefits of BR is that it precludes over-training in the network. The previous studies successfully applied this algorithm to train ANN to solve different problems (32,33). The mathematical formulation of the MLP can be expressed as follows:…”
Section: Artificial Neural Networkmentioning
confidence: 99%
“…The gradient-descent method, along with the chain rule of differentiation, is generally employed to modify the network weights as : where Δv ij (n) and Δv ij (n−1) = the weight increments between node i and j during the n th and (n-1) th pass or epoch; δ = the learning rate; and α = the momentum factor. This study adopted the hyperbolic tangent activation function ) and the training algorithm of Levenberg-Marquardt (LM) (Daliakopoulos et al 2005;Nourani et al 2008aNourani et al , 2008bMustafa et al 2012). …”
Section: Artificial Neural Network (Ann)mentioning
confidence: 99%