Phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) binds to extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinases to alter ERK1/2 cellular localization and target preferences and binds to adaptors in the extrinsic cell death pathway to block apoptosis. Here, we report that PEA-15 protein expression is inversely correlated with the invasive behavior of breast cancer in an immunohistochemical analysis of a breast cancer progression tissue microarray. Short hairpin RNA-mediated inhibition of PEA-15 expression increased the invasion of PEA-15-expressing tumor cells in vitro, suggesting a causative role for PEA-15 in the inhibition of invasion. This causative role was confirmed by the finding that the enforced expression of PEA-15 in invasive tumor cells reduced invasion. The effect of PEA-15 on tumor invasion is mediated by its interaction with ERK1/2 as shown by the following: (a) PEA-15 mutants that fail to bind ERK1/2 did not inhibit invasion; (b) overexpression of ERK1 or activated MAP/ERK kinase (MEK) reversed the inhibitory effect of PEA-15; (c) when an inhibitor of ERK1/2 activation reduced invasion, PEA-15 expression did not significantly reduce invasion further. Furthermore, we find that the effect of PEA-15 on invasion seems to relate to the nuclear localization of activated ERK1/2. PEA-15 inhibits invasion by keeping ERK out of the nucleus, as a PEA-15 mutant that cannot prevent ERK nuclear localization was not able to inhibit invasion. In addition, membrane-localized ERK1, which sequesters endogenous ERK1 to prevent its nuclear localization, also inhibited invasion. These results reveal that PEA-15 regulates cancer cell invasion via its ability to bind ERK1/2 and indicate that nuclear entry of ERK1/2 is important in tumor behavior. [Cancer Res 2007;67(4):1536-44]