The four varied side chains of charged iridium(III) complexes were synthesized and characterized for organic light emitting diodes. The core materials were designed with 9,9-bis(4-methoxyphenyl)-4,5-diazafluorene as the bulky N^N ligand which prevent the π-π stacking interaction in the solid state. Their photophysical and electrochemical properties were investigated. OLEDs were fabricated with the structure ITO/PEDOT:PSS/ PVK:complex (10:7 by weight)/ TPBi/LiF/Al. The similar colors were obtained with varied OLEDs performances. We concluded that the long alkyl chains affected to the excellent film-forming property of emitting layer. Therefore, the device based on the n-octyl chain namely [(9,9-bis(4-octyloxyphenyl)-9H-cyclopentadipyridine-N-N′)-bis-(2-phenylpyridine-C2′,N)-iridium(III)] haxafluorophosphate (C8) showed the maximum current efficiency and brightness of 11.37 cd/A and 3,926 cd/m2, respectively.