Over the last decade, danger-associated molecular pattern molecules, or alarmins, have been recognized as signaling mediators of sterile inflammatory responses after trauma and injury. In contrast with the accepted passive release models suggested by the "danger hypothesis," it was recently shown that alarmins can also directly sense and report damage by signaling to the environment when released from live cells undergoing physiological stress, even without loss of subcellular compartmentalization. In this article, we review the involvement of alarmins such as IL-1α, IL-33, IL-16, and high-mobility group box 1 in cellular and physiological stress, and suggest a novel activity of these molecules as central initiators of sterile inflammation in response to nonlethal stress, a function we denote "stressorins." We highlight the role of posttranslational modifications of stressorins as key regulators of their activity and propose that targeted inhibition of stressorins or their modifiers could serve as attractive new anti-inflammatory treatments for a broad range of diseases.