2008
DOI: 10.4028/www.scientific.net/kem.392-394.750
|View full text |Cite
|
Sign up to set email alerts
|

Hole Filling Algorithm in Surface Reconstruction Based on Radial Basis Function Neural Network

Abstract: Aiming at hole filling in points cloud data reconstruction, a novel neural network arithmetic was employed in abridged points cloud data surface reconstruction. Radial basis function neural network and simulated annealing arithmetic was combined. Global optimization feature of simulated annealing was employed to adjust the network weights, the arithmetic can keep the network from getting into local minimum. MATLAB program was compiled, experiments on abridged points cloud data have been done employing this ari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 3 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?