Thermal management is today a primary focus in the electronics industry due to the continuous increase of power density in chips increasingly smaller in size, which has become a critical issue in fast-growing industries such as data centers. As air-cooling fails to meet the high heat extraction demands of this sector, liquid cooling emerges as a promising alternative. Nevertheless, advanced microelectronic components require a cooling system that not only reduces the energetic consumption but also enhances the thermal performance by minimizing the thermal resistance and ensuring high-temperature uniformities, especially under variable heat load scenarios with high heat dissipating hotspot regions, where conventional liquid cooling solutions prove inefficient. This chapter provides an overview of different passive heat transfer enhancement techniques of micro heat sinks from the literature, focusing on intelligent and adaptive solutions designed to optimize the cooling performance based on local and instantaneous cooling requirements for non-uniform and time-dependent power distribution maps.