We present a novel, real-time algorithm to extract the trajectory of each pedestrian in moderately dense crowd videos. In order to improve the tracking accuracy, we use a hybrid motion model that combines discrete and continuous flow models. The discrete model is based on microscopic agent formulation and is used for local navigation, interaction, and collision avoidance. The continuum model accounts for macroscopic behaviors, including crowd orientation and flow. We use our hybrid model with particle filters to compute the trajectories at interactive rates. We demonstrate its performance in moderately-dense crowd videos with tens of pedestrians and highlight the improved accuracy on different datasets.