1996
DOI: 10.1002/aic.690421011
|View full text |Cite
|
Sign up to set email alerts
|

Identification of faulty sensors using principal component analysis

Abstract: Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstmction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
256
0
3

Year Published

2004
2004
2014
2014

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 481 publications
(273 citation statements)
references
References 17 publications
1
256
0
3
Order By: Relevance
“…Neben Mittelwert-und Varianzschätzungen und weiteren stochastischen Methoden kommen dabei häufig Verfahren aus dem Bereich der Mustererkennung zum Einsatz, insbesondere für die Isolation von Fehlern. Neben der sogenannten Principal Component Analysis [61] werden dabei Support Vector Ma- chines [256], statische Neuro-Fuzzy-Systeme [166] und fortgeschrittene Clustering-Algorithmen [10] angewendet. Der zusätzliche Aufwand wird also in den Softwareteil verlagert, was gegenüber redundanter Hardware wesentlich kostengünstiger ist.…”
Section: Signalbasierte Fehlerdiagnoseunclassified
“…Neben Mittelwert-und Varianzschätzungen und weiteren stochastischen Methoden kommen dabei häufig Verfahren aus dem Bereich der Mustererkennung zum Einsatz, insbesondere für die Isolation von Fehlern. Neben der sogenannten Principal Component Analysis [61] werden dabei Support Vector Ma- chines [256], statische Neuro-Fuzzy-Systeme [166] und fortgeschrittene Clustering-Algorithmen [10] angewendet. Der zusätzliche Aufwand wird also in den Softwareteil verlagert, was gegenüber redundanter Hardware wesentlich kostengünstiger ist.…”
Section: Signalbasierte Fehlerdiagnoseunclassified
“…Neural networks are an important class of non-statistical classifiers (Leonard and Kramer, 1990;Kavuri and Venkatasubramanian, 1994). PCA/PLS and statistical pattern classifiers form a major component of statistical feature extraction methods (Kramer, 1991;Nomikos and MacGregor, 1994;Dong and McAvoy, 1996;Dunia et al, 1996).…”
Section: Process History-based Methodsmentioning
confidence: 99%
“…Some examples of typical faults for feedback controllers are a burned-out thermocouple, a broken transducer or a stuck valve 14 . For sensors such as a temperature or a flow measurement, the most typical fault types are a bias fault, a complete failure, a drifting fault and a precision degradation fault 15 . Therefore, increasing the robustness of individual control system components may not be sufficient to maintain a high level of control performance.…”
Section: Data-based Fault-tolerant Model Predictive Controlmentioning
confidence: 99%