The dramatic proliferation of cloud computing makes it an attractive target for malicious attacks. Increasing solutions resort to virtual machine introspection (VMI) to deal with security issues in the cloud environment. However, the existing works are not feasible to support tenants to customize individual security services based on their security requirements flexibly. Additionally, adoption of VMI-based security solutions makes tenants at the risk of exposing sensitive information to attackers. To alleviate the security and privacy anxieties of tenants, we present SECLOUD, a framework for monitoring VMs in the cloud for security analysis in this paper. By extending VMI techniques, SECLOUD provides remote tenants or their authorized security service providers with flexible interfaces for monitoring runtime information of guest virtual machines (VMs) in a non-intrusive manner. The proposed framework enhances effectiveness of monitoring by taking advantages of architectural symmetry of cloud environment. Moreover, we harden our framework with a privacy-preserving capacity for tenants. The flexibility and effectiveness of SECLOUD is demonstrated through a prototype implementation based on Xen hypervisor, which results in acceptable performance overhead.