: There is a global need for effective and affordable rabies vaccines, which is unmet by current vaccines due to limitations in their production capacities, required administration schedules, storage requirements, and cost. Many different experimental approaches previously used for bacterial and viral vaccines have been applied to rabies, but with variable success. One of the most promising new concepts is the use of messenger RNA (mRNA) in encoding the main rabies virus antigen, the envelope glycoprotein (RABV-G). CureVac has applied their proprietary technology platform for the production of mRNA to this problem, resulting in the rabies vaccine candidate CV7201. Following preclinical studies in mice and pigs showing that CV7201 could induce neutralizing immune responses that protected against rabies virus, different dosages and routes of administration of CV7201 were tested in a phase 1 human study. This clinical study proved that mRNA vaccination was safe and had an acceptable reactogenicity profile, but immune responses depended on the mode of administration, and they did not unequivocally support CV7201 for further development as a prophylactic vaccine with this particular formulation. Further, preclinical studies using RABV-G mRNA encapsulated in lipid nanoparticles (LNPs) showed an improved response in both mice and nonhuman primates, and these encouraging results are currently being followed up in clinical studies in humans. This review summarizes the recent advances in mRNA vaccines against rabies.