A resilient transport network, which is significant for urban sustainability and security, is characterized by its ability to recover from disruptions subject to natural and man-made disasters. Bike sharing could act as a viable alternative in the case of public transit disruptions given its flexibility and various social, environmental, and economic benefits. This study aims to estimate quantitatively the potential of bike sharing to promote transport resilience, by using autoregressive negative binomial time series model to investigate the effects of public transit closures on bike sharing demand in Washington, D.C. area during 2015–2017. We find that (1) bike sharing can act as a supplementary mode to enhance urban transport resilience in the case of complete transit closure; (2) the proximity of bike sharing docks to metro stations has a powerful effect on propensity to use a bike sharing program; and (3) extreme weather is one of major barriers to bicycling. Planners can enhance resilience of urban transport networks by fully considering the capacity and usage of bike sharing docks, as well as the coherence of metro stations and bike sharing docks, in distributing and rebalancing activities.