2013 21st Iranian Conference on Electrical Engineering (ICEE) 2013
DOI: 10.1109/iraniancee.2013.6599600
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of sequential algorithm in batch processing for clutter and direct signal cancellation in passive bistatic radars

Abstract: Passive bistatic radars are an important batch of scout radars that use the signals of other independent transmitters as illuminators of opportunity. Cancellation of clutter and multipath is an important problem in these radars. This problem is exacerbated as the transmitter signal is not under the control of designer. In this paper, we propose a novel algorithm for clutter and multipath cancellation in the passive radars that called sequential cancellation algorithm-batch (SCA-B). Indeed, the SCA-B is a gener… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 18 publications
(8 citation statements)
references
References 6 publications
0
7
0
Order By: Relevance
“…By correlating the signal from reference and surveillance channels, the range and Doppler information can be derived by using CAF mapping. To reduce the computational complexity, we also apply the batching process [28] to this calculation: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{equation*} CAF (\tau, f_{d}) = \sum _{k=0}^{N_{b}-1} \int _{0}^{T} x_{i}(t) {y^{*}_{i}{(t-kT_{B}-\tau)}} e^{j2\pi f_{d} f_{c} t} dt\quad \end{equation*}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$n$ \end{document} is the index of batch, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T$ \end{document} is the integration time, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$n_{b}$ \end{document} is the number of batch and limited by max detectable velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$V_{max}$ \end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T_{B}$ \end{document} is the length of each batch and normally is chosen as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T_{B}=T/n_{b}$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\left \lfloor{ * }\right \rfloor $ \end{document} means the complex conjugation. The range resolution of passive radar is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Delta R=c/2B$ \end{document} , however in the case of narrow-band wireless energy harvesting signal (20 MHz), the range resolution is limited at 7.5 meters which is too coarse for indoor scenario.…”
Section: Passive Radar Signal Processingmentioning
confidence: 99%
“…By correlating the signal from reference and surveillance channels, the range and Doppler information can be derived by using CAF mapping. To reduce the computational complexity, we also apply the batching process [28] to this calculation: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{equation*} CAF (\tau, f_{d}) = \sum _{k=0}^{N_{b}-1} \int _{0}^{T} x_{i}(t) {y^{*}_{i}{(t-kT_{B}-\tau)}} e^{j2\pi f_{d} f_{c} t} dt\quad \end{equation*}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$n$ \end{document} is the index of batch, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T$ \end{document} is the integration time, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$n_{b}$ \end{document} is the number of batch and limited by max detectable velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$V_{max}$ \end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T_{B}$ \end{document} is the length of each batch and normally is chosen as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T_{B}=T/n_{b}$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\left \lfloor{ * }\right \rfloor $ \end{document} means the complex conjugation. The range resolution of passive radar is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\Delta R=c/2B$ \end{document} , however in the case of narrow-band wireless energy harvesting signal (20 MHz), the range resolution is limited at 7.5 meters which is too coarse for indoor scenario.…”
Section: Passive Radar Signal Processingmentioning
confidence: 99%
“…In contrast, the decimation technology can solve the computational issue by dividing a long sequence into groups of short sequences before the FFT transformation. One such technology is known as the batching process [33], which when applied to the CAF can be expressed as right leftthickmathspace.5emCAF(Rb,fd)=false∑k=0nb1Ti1TiSsurifalse(tfalse)SrefitkTB Rbcenormalj2πfcfdtnormaldt,where Ssurifalse(tfalse) and Srefifalse(tfalse) are down‐converted baseband signals from surveillance and reference channels with batching length TnormalB and nnormalb is the number of batches. The range resolution is defined as normalΔRnormalb=c/2B, where B is the bandwidth of the WiFi signal, which is obviously too coarse for indoor application.…”
Section: Methodsmentioning
confidence: 99%
“…In contrast, the decimation technology can solve the computational issue by dividing a long sequence into groups of short sequences before the FFT transformation. One such technology is known as the batching process [33], which when applied to the CAF can be expressed as…”
Section: Preprocessingmentioning
confidence: 99%
“…Secondly, the FFT algorithm expands all frequency components which may bury the desired Doppler This operation will lead to faster CAF processing. One of such technology is known as the batching process [31] by splitting the baseband signal into several batches (each contains small but equal portion of signal). The equation for CAF with batching process can be presented as:…”
Section: A Cross Ambiguity Functionmentioning
confidence: 99%